Genetic and molecular analysis of phytochromes from the filamentous fungus Neurospora crassa.

نویسندگان

  • Allan C Froehlich
  • Bosl Noh
  • Richard D Vierstra
  • Jennifer Loros
  • Jay C Dunlap
چکیده

Phytochromes (Phys) comprise a superfamily of red-/far-red-light-sensing proteins. Whereas higher-plant Phys that control numerous growth and developmental processes have been well described, the biochemical characteristics and functions of the microbial forms are largely unknown. Here, we describe analyses of the expression, regulation, and activities of two Phys in the filamentous fungus Neurospora crassa. In addition to containing the signature N-terminal domain predicted to covalently associate with a bilin chromophore, PHY-1 and PHY-2 contain C-terminal histidine kinase and response regulator motifs, implying that they function as hybrid two-component sensor kinases activated by light. A bacterially expressed N-terminal fragment of PHY-2 covalently bound either biliverdin or phycocyanobilin in vitro, with the resulting holoprotein displaying red-/far-red-light photochromic absorption spectra and a photocycle in vitro. cDNA analysis of phy-1 and phy-2 revealed two splice isoforms for each gene. The levels of the phy transcripts are not regulated by light, but the abundance of the phy-1 mRNAs is under the control of the circadian clock. Phosphorylated and unphosphorylated forms of PHY-1 were detected; both species were found exclusively in the cytoplasm, with their relative abundances unaffected by light. Strains containing deletions of phy-1 and phy-2, either singly or in tandem, were not compromised in any known photoresponses in Neurospora, leaving their function(s) unclear.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MOLECULAR ANALYSIS OF THE SULFUR REGULATORY CIRCUIT OF NEUROSPORA CRASSA

The sulfur regulatory circuit of the filamentous fungus, Neurospora crassa, consists of a set of unlinked structural genes which encode sulfur catabolic and two major regulatory genes which govern their expression. The cys-3 regulatory gene encode a transacting regulatory protein which activates the expression of cys-14 and ars, whereas the other regulatory genes Scon-l and Scon-2 appear to...

متن کامل

Genetic and molecular characterization of a cryptochrome from the filamentous fungus Neurospora crassa.

In plants and animals, cryptochromes function as either photoreceptors or circadian clock components. We have examined the cryptochrome from the filamentous fungus Neurospora crassa and demonstrate that Neurospora cry encodes a DASH-type cryptochrome that appears capable of binding flavin adenine dinucleotide (FAD) and methenyltetrahydrofolate (MTHF). The cry transcript and CRY protein levels a...

متن کامل

Cell fusion in the filamentous fungus, Neurospora crassa.

Hyphal fusion occurs at different stages in the vegetative and sexual life cycle of filamentous fungi. Similar to cell fusion in other organisms, the process of hyphal fusion requires cell recognition, adhesion, and membrane merger. Analysis of the hyphal fusion process in the model organism Neurospora crassa using fluorescence and live cell imaging as well as cell and molecular biological tech...

متن کامل

The genetic basis of cellular morphogenesis in the filamentous fungus Neurospora crassa.

Cellular polarity is a fundamental property of every cell. Due to their extremely fast growth rate (>/=1 microm/s) and their highly elongated form, filamentous fungi represent a prime example of polarized growth and are an attractive model for the analysis of fundamental mechanisms underlying cellular polarity. To identify the critical components that contribute to polarized growth, we develope...

متن کامل

Neurospora crassa: looking back and looking forward at a model microbe.

Investigation of the red bread mold that contaminated French bakeries nearly two centuries ago has led to a wealth of discoveries that have impacted our understanding of genetic, biochemical, and molecular mechanisms in microbes, from Mendelian genetics and the gene-enzyme relationship to circadian rhythm and plant cell wall degradation. Early Neurospora research focused on elucidating mechanis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eukaryotic cell

دوره 4 12  شماره 

صفحات  -

تاریخ انتشار 2005